Перевод: со всех языков на все языки

со всех языков на все языки

Baird of Television

  • 1 Baird, John Logie

    [br]
    b. 13 August 1888 Helensburgh, Dumbarton, Scotland
    d. 14 June 1946 Bexhill-on-Sea, Sussex, England
    [br]
    Scottish inventor of mechanically-based television.
    [br]
    Baird attended Larchfield Academy, then the Royal Technical College and Glasgow University. However, before he could complete his electrical-engineering degree, the First World War began, although poor health kept him out of the armed services.
    Employed as an engineer at the Clyde Valley Electrical Company, he lost his position when his diamond-making experiment caused a power failure in Glasgow. He then went to London, where he lived with his sister and tried manufacturing household products of his own design. To recover from poor health, he then went to Hastings and, using scrap materials, began experiments with imaging systems. In 1924 he transmitted outline images over wires, and by 1925 he was able to transmit recognizable human faces. In 1926 he was able to transmit moving images at a resolution of thirty lines per image and a frequency of ten images per second over an infrared link. Also that year, he started the world's first television station, which he named 2TV. In 1927 he transmitted moving images from London to Glasgow, and later that year to a passenger liner. In 1928 he demonstrated colour television.
    In 1936, when the BBC wanted to begin television service, Baird's system lost out in a competition with Marconi Electric and Musical Industries (EMI). In 1946 Baird reported that he had successfully completed research on a stereo television system.
    [br]
    Further Reading
    R.Tiltman, 1933, Baird of Television, London: Seeley Service; repub. 1974, New York: Arno Press.
    J.Rowland, 1967, The Television Man: The Story of John Logie Baird, New York: Roy Publishers.
    F.Macgregor, 1984, Famous Scots, Gordon Wright (contains a short biography on Baird).
    HO

    Biographical history of technology > Baird, John Logie

  • 2 Shoenberg, Isaac

    [br]
    b. 1 March 1880 Kiev, Ukraine
    d. 25 January 1963 Willesden, London, England
    [br]
    Russian engineer and friend of Vladimir Zworykin; Director of Research at EMI, responsible for creating the team that successfully developed the world's first all-electronic television system.
    [br]
    After his initial engineering education at Kiev Polytechnic, Shoenberg went to London to undertake further studies at the Royal College of Science. In 1905 he returned to Russia and rose to become Chief Engineer of the Russian Wireless Telegraphy Company. He then returned to England, where he was a consultant in charge of the Patent Department and then joint General Manager of the Marconi Wireless Telegraphy Company (see Marconi). In 1929 he joined the Columbia Graphophone Company, but two years later this amalgamated with the Gramophone Company, by then known as His Master's voice (HMV), to form EMI (Electric and Musical Industries), a company in which the Radio Corporation of America (RCA) had a significant shareholding. Appointed Director of the new company's Research Laboratories in 1931, Shoenberg gathered together a team of highly skilled engineers, including Blumlein, Browne, Willans, McGee, Lubszynski, Broadway and White, with the objective of producing an all-electronic television system suitable for public broadcasting. A 150-line system had already been demonstrated using film as the source material; a photoemissive camera tube similar to Zworykin's iconoscope soon followed. With alternate demonstrations of the EMI system and the mechanical system of Baird arranged with the object of selecting a broadcast system for the UK, Shoenberg took the bold decision to aim for a 405-line "high-definition" standard, using interlaced scanning based on an RCA patent and further developed by Blumlein. This was so successful that it was formally adopted as the British standard in 1935 and regular broadcasts, the first in the world, began in 1937. It is a tribute to Shoenberg's vision and the skills of his team that this standard was to remain in use, apart from the war years, until finally superseded in 1985.
    [br]
    Principal Honours and Distinctions
    Knighted 1954. Institution of Electrical Engineers Faraday Medal 1954.
    Further Reading
    A.D.Blumlein et al., 1938, "The Marconi-EMI television system", Journal of the Institution of Electrical Engineers 83:729 (provides a description of the development of the 405-line system).
    For more background information, see Proceedings of the International Conference on the History of Television. From Early Days to the Present, November 1986, Institution of Electrical Engineers Publication No. 271.
    KF

    Biographical history of technology > Shoenberg, Isaac

  • 3 Farnsworth, Philo Taylor

    [br]
    b. 19 August 1906 Beaver, Utah, USA
    d. 11 March 1971 Salt Lake City, Utah, USA
    [br]
    American engineer and independent inventor who was a pioneer in the development of television.
    [br]
    Whilst still in high school, Farnsworth became interested in the possibility of television and conceived many of the basic features of a practicable system of TV broadcast and reception. Following two years of study at the Brigham Young University in Provo, Utah, in 1926 he cofounded the Crocker Research Laboratories in San Francisco, subsequently Farnsworth Television Inc. (1929) and Farnsworth Radio \& Television Corporation, Fort Wayne, Indiana (1938). There he began a lifetime of research, primarily in the field of television. In 1927, with the backing of the Radio Corporation of America (RCA) and the collaboration of Vladimir Zworykin, he demonstrated the first all-electronic television system, based on his early ideas for an image dissector tube, the first electronic equivalent of the Nipkow disc. With this rudimentary sixty-line system he was able to transmit a recognizable dollar sign and file the first of many TV patents. From then on he contributed to a variety of developments in the fields of vacuum tubes, radar and atomic-power generation, with patents on cathode ray tubes, amplifying and pick-up tubes, electron multipliers and photoelectric materials.
    [br]
    Principal Honours and Distinctions
    Institute of Radio Engineers Morris Leibmann Memorial Prize 1941.
    Bibliography
    1930, British patent nos. 368,309 and 368,721 (for his image dissector).
    1934, "Television by electron image scanning", Journal of the Franklin Institute 218:411 (describes the complete image-dissector system).
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry 1925–1941, University of Alabama Press.
    O.E.Dunlop Jr, 1944, Radio's 100 Men of Science.
    G.R.M.Garratt \& A.H.Mumford, 1952, "The history of television", Proceedings of the Institution of Electrical Engineers III A Television 99.
    KF

    Biographical history of technology > Farnsworth, Philo Taylor

  • 4 Zworykin, Vladimir Kosma

    [br]
    b. 30 July 1889 Mourum (near Moscow), Russia
    d. 29 July 1982 New York City, New York, USA
    [br]
    Russian (naturalized American 1924) television pioneer who invented the iconoscope and kinescope television camera and display tubes.
    [br]
    Zworykin studied engineering at the Institute of Technology in St Petersburg under Boris Rosing, assisting the latter with his early experiments with television. After graduating in 1912, he spent a time doing X-ray research at the Collège de France in Paris before returning to join the Russian Marconi Company, initially in St Petersburg and then in Moscow. On the outbreak of war in 1917, he joined the Russian Army Signal Corps, but when the war ended in the chaos of the Revolution he set off on his travels, ending up in the USA, where he joined the Westinghouse Corporation. There, in 1923, he filed the first of many patents for a complete system of electronic television, including one for an all-electronic scanning pick-up tube that he called the iconoscope. In 1924 he became a US citizen and invented the kinescope, a hard-vacuum cathode ray tube (CRT) for the display of television pictures, and the following year he patented a camera tube with a mosaic of photoelectric elements and gave a demonstration of still-picture TV. In 1926 he was awarded a PhD by the University of Pittsburgh and in 1928 he was granted a patent for a colour TV system.
    In 1929 he embarked on a tour of Europe to study TV developments; on his return he joined the Radio Corporation of America (RCA) as Director of the Electronics Research Group, first at Camden and then Princeton, New Jersey. Securing a budget to develop an improved CRT picture tube, he soon produced a kinescope with a hard vacuum, an indirectly heated cathode, a signal-modulation grid and electrostatic focusing. In 1933 an improved iconoscope camera tube was produced, and under his direction RCA went on to produce other improved types of camera tube, including the image iconoscope, the orthicon and image orthicon and the vidicon. The secondary-emission effect used in many of these tubes was also used in a scintillation radiation counter. In 1941 he was responsible for the development of the first industrial electron microscope, but for most of the Second World War he directed work concerned with radar, aircraft fire-control and TV-guided missiles.
    After the war he worked for a time on high-speed memories and medical electronics, becoming Vice-President and Technical Consultant in 1947. He "retired" from RCA and was made an honorary vice-president in 1954, but he retained an office and continued to work there almost up until his death; he also served as Director of the Rockefeller Institute for Medical Research from 1954 until 1962.
    [br]
    Principal Honours and Distinctions
    Zworykin received some twenty-seven awards and honours for his contributions to television engineering and medical electronics, including the Institution of Electrical Engineers Faraday Medal 1965; US Medal of Science 1966; and the US National Hall of Fame 1977.
    Bibliography
    29 December 1923, US patent no. 2,141, 059 (the original iconoscope patent; finally granted in December 1938!).
    13 July 1925, US patent no. 1,691, 324 (colour television system).
    1930, with D.E.Wilson, Photocells and Their Applications, New York: Wiley. 1934, "The iconoscope. A modern version of the electric eye". Proceedings of the
    Institute of Radio Engineers 22:16.
    1946, Electron Optics and the Electron Microscope.
    1940, with G.A.Morton, Television; revised 1954.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Zworykin, Vladimir Kosma

  • 5 Jenkins, Charles Francis

    [br]
    b. 1867 USA
    d. 1934 USA
    [br]
    American pioneer of motion pictures and television.
    [br]
    During the early years of the motion picture industry, Jenkins made many innovations, including the development in 1894 of his own projector, the "Phantoscope", which was widely used for a number of years. In the same year he also suggested the possibility of electrically transmitting pictures over a distance, an interest that led to a lifetime of experimentation. As a result of his engineering contributions to the practical realization of moving pictures, in 1915 the National Motion Picture Board of Trade asked him to chair a committee charged with establishing technical standards for the industry. This in turn led to his proposing the creation of a professional society for those engineers in the industry, and the following year the Society of Motion Picture Engineers (later to become the Society of Motion Picture and Television Engineers) was formed, with Jenkins as its first President. Soon after this he began experiments with mechanical television, using both the Nipkow hole-spiral disc and a low-definition system of his own, based on rotating bevelled glass discs (his so-called "prismatic rings") and alkali-metal photocells. In the 1920s he gave many demonstrations of mechanical television, including a cable transmission of a crude silhouette of President Harding from Washington, DC, to Philadelphia in 1923 and a radio broadcast from Washington in 1928. The following year he formed the Jenkins Television Company to make television transmitters and receivers, but it soon went into debt and was acquired by the de Forest Company, from whom RCA later purchased the patents.
    [br]
    Principal Honours and Distinctions
    First President, Society of Motion Picture Engineers 1916.
    Bibliography
    1923, "Radio photographs, radio movies and radio vision", Transactions of the Society of Motion Picture Engineers 16:78.
    1923, "Recent progress in the transmission of motion pictures by radio", Transactions of
    the Society of Motion Picture Engineers 17:81.
    1925, "Radio movies", Transactions of the Society of Motion Picture Engineers 21:7. 1930, "Television systems", Journal of the Society of Motion Picture Engineers 15:445. 1925. Vision by Radio.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry, 1925–41: University of Alabama Press.
    R.W.Hubbell, 1946, 4,000 Years of Television, London: G.Harrap \& Sons.
    1926. "The Jenkins system", Wireless World 18: 642 (contains a specific account of Jenkins's work).
    KF

    Biographical history of technology > Jenkins, Charles Francis

  • 6 Ives, Herbert Eugene

    [br]
    b. 1882 USA
    d. 1953
    [br]
    American physicist find television pioneer.
    [br]
    Ives gained his PhD in physics from Johns Hopkins University, Baltimore, Maryland, and subsequently served in the US Signal Corps, eventually gaining experience in aerial photography. He then joined the Western Electric Engineering Department (later Bell Telephone Laboratories), c.1920 becoming leader of a group concerned with television-image transmission over telephone lines. In 1927, using a Nipkow disc, he demonstrated 50-line, 18 frames/sec pictures that could be displayed as either 2 in.×2 1/2 in. (5.1 cm×6.4 cm) images suitable for a "wirephone", or 2 ft ×2 1/2 ft (61 cm×76 cm) images for television viewing. Two years later, using a single-spiral disc and three separately modulated light sources, he was able to produce full-colour images.
    [br]
    Bibliography
    1915, "The transformation of colour mixture equations", Journal of the Franklin Institute 180:673.
    1923, "do—Pt II", Journal of the Franklin Institute 195–23.
    1925, "Telephone picture transmission", Transactions of the Society of Motion Picture and Television Engineers 23:82.
    1929, "Television in colour", Bell Laboratories Record 7:439.
    1930, with A.L.Johnsrul, "Television in colour by a beam-scanning method", Journal of the Optical Society of America 20:11.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Ives, Herbert Eugene

  • 7 Campbell-Swinton, Alan Archibald

    [br]
    b. 18 October 1863 Kimmerghame, Berwickshire, Scotland
    d. 19 February 1930 London, England
    [br]
    Scottish electrical engineer who correctly predicted the development of electronic television.
    [br]
    After a time at Cargilfield Trinity School, Campbell-Swinton went to Fettes College in Edinburgh from 1878 to 1881 and then spent a year abroad in France. From 1882 until 1887 he was employed at Sir W.G.Armstrong's works in Elswick, Newcastle, following which he set up his own electrical contracting business in London. This he gave up in 1904 to become a consultant. Subsequently he was an engineer with many industrial companies, including the W.T.Henley Telegraph Works Company, Parson Marine Steam Turbine Company and Crompton Parkinson Ltd, of which he became a director. During this time he was involved in electrical and scientific research, being particularly associated with the development of the Parson turbine.
    In 1903 he tried to realize distant electric vision by using a Braun oscilloscope tube for the. image display, a second tube being modified to form a synchronously scanned camera, by replacing the fluorescent display screen with a photoconductive target. Although this first attempt at what was, in fact, a vidicon camera proved unsuccessful, he was clearly on the right lines and in 1908 he wrote a letter to Nature with a fairly accurate description of the principles of an all-electronic television system using magnetically deflected cathode ray tubes at the camera and receiver, with the camera target consisting of a mosaic of photoconductive elements that were scanned and discharged line by line by an electron beam. He expanded on his ideas in a lecture to the Roentgen Society, London, in 1911, but it was over twenty years before the required technology had advanced sufficiently for Shoenberg's team at EMI to produce a working system.
    [br]
    Principal Honours and Distinctions
    FRS (Member of Council 1927 and 1929). Freeman of the City of London. Liveryman of Goldsmiths' Company. First President, Wireless Society 1920–1. Vice-President, Royal Society of Arts, and Chairman of Council 1917–19,1920–2. Chairman, British Scientific Research Association. Vice-President, British Photographic Research Association. Member of the Broadcasting Board 1924. Vice-President, Roentgen Society 1911–12. Vice-President, Institution of Electrical Engineers 1921–5. President, Radio Society of Great Britain 1913–21. Manager, Royal Institution 1912–15.
    Bibliography
    1908, Nature 78:151; 1912, Journal of the Roentgen Society 8:1 (both describe his original ideas for electronic television).
    1924, "The possibilities of television", Wireless World 14:51 (gives a detailed description of his proposals, including the use of a threestage valve video amplifier).
    1926, Nature 118:590 (describes his early experiments of 1903).
    Further Reading
    The Proceedings of the International Conference on the History of Television. From Early Days to the Present, November 1986, Institution of Electrical Engineers Publication No. 271 (a report of some of the early developments in television). A.A.Campbell-Swinton FRS 1863–1930, Royal Television Society Monograph, 1982, London (a biography).
    KF

    Biographical history of technology > Campbell-Swinton, Alan Archibald

  • 8 Goldmark, Peter Carl

    [br]
    b. 2 December 1906 Budapest, Hungary
    d. 7 December 1977 Westchester Co., New York, USA
    [br]
    Austro-Hungarian engineer who developed the first commercial colour television system and the long-playing record.
    [br]
    After education in Hungary and a period as an assistant at the Technische Hochschule, Berlin, Goldmark moved to England, where he joined Pye of Cambridge and worked on an experimental thirty-line television system using a cathode ray tube (CRT) for the display. In 1936 he moved to the USA to work at Columbia Broadcasting Laboratories. There, with monochrome television based on the CRT virtually a practical proposition, he devoted his efforts to finding a way of producing colour TV images: in 1940 he gave his first demonstration of a working system. There then followed a series of experimental field-sequential colour TV systems based on segmented red, green and blue colour wheels and drums, where the problem was to find an acceptable compromise between bandwidth, resolution, colour flicker and colour-image breakup. Eventually he arrived at a system using a colour wheel in combination with a CRT containing a panchromatic phosphor screen, with a scanned raster of 405 lines and a primary colour rate of 144 fields per second. Despite the fact that the receivers were bulky, gave relatively poor, dim pictures and used standards totally incompatible with the existing 525-line, sixty fields per second interlaced monochrome (black and white) system, in 1950 the Federal Communications Commission (FCC), anxious to encourage postwar revival of the industry, authorized the system for public broadcasting. Within eighteen months, however, bowing to pressure from the remainder of the industry, which had formed its own National Television Systems Committee (NTSC) to develop a much more satisfactory, fully compatible system based on the RCA three-gun shadowmask CRT, the FCC withdrew its approval.
    While all this was going on, Goldmark had also been working on ideas for overcoming the poor reproduction, noise quality, short playing-time (about four minutes) and limited robustness and life of the long-established 78 rpm 12 in. (30 cm) diameter shellac gramophone record. The recent availability of a new, more robust, plastic material, vinyl, which had a lower surface noise, enabled him in 1948 to reduce the groove width some three times to 0.003 in. (0.0762 mm), use a more lightly loaded synthetic sapphire stylus and crystal transducer with improved performance, and reduce the turntable speed to 33 1/3 rpm, to give thirty minutes of high-quality music per side. This successful development soon led to the availability of stereophonic recordings, based on the ideas of Alan Blumlein at EMI in the 1930s.
    In 1950 Goldmark became a vice-president of CBS, but he still found time to develop a scan conversion system for relaying television pictures to Earth from the Lunar Orbiter spacecraft. He also almost brought to the market a domestic electronic video recorder (EVR) system based on the thermal distortion of plastic film by separate luminance and coded colour signals, but this was overtaken by the video cassette recorder (VCR) system, which uses magnetic tape.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Award 1945. Institute of Electrical and Electronics Engineers Vladimir K. Zworykin Award 1961.
    Bibliography
    1951, with J.W.Christensen and J.J.Reeves, "Colour television. USA Standard", Proceedings of the Institute of Radio Engineers 39: 1,288 (describes the development and standards for the short-lived field-sequential colour TV standard).
    1949, with R.Snepvangers and W.S.Bachman, "The Columbia long-playing microgroove recording system", Proceedings of the Institute of Radio Engineers 37:923 (outlines the invention of the long-playing record).
    Further Reading
    E.W.Herold, 1976, "A history of colour television displays", Proceedings of the Institute of Electrical and Electronics Engineers 64:1,331.
    KF

    Biographical history of technology > Goldmark, Peter Carl

  • 9 Nipkow, Paul Gottlieb

    [br]
    b. 22 August 1860 Lauenburg, Pommern (now Lebork, Poland)
    d. 24 August 1940 Berlin, Germany
    [br]
    Polish electrical engineer who invented the Nipkow television scanning disc.
    [br]
    In 1884, while still a student engineer, Nipkow patented a mechanical television pick-up device using a disc with a spiral of twenty-four holes rotating at 600 rpm in front of a selenium cell. He also proposed a display on an identical synchronous disc in conjunction with a light-modulator based on the Faraday effect. Unfortunately it was not possible to realize a working system at the time because of the slow response of selenium cells and the lack of suitable electronic-sig-nal amplifiers; he was unable to pay the extension fees and so the patent lapsed. Others took up the idea, however, and in 1907 pictures were sent between London and Paris by wire. Subsequently, the principle was used by Baird, Ives, and Jenkins.
    For most of his working life after obtaining his doctorate, Nipkow was employed as an engineer by a company that made railway-signalling equipment, but his pioneering invention was finally recognized in 1934 when he was made Honorary President of the newly formed German Television Society.
    [br]
    Principal Honours and Distinctions
    President, German Television Society 1934.
    Bibliography
    1884, German patent no. 30,105 (Nipkow's pioneering method of television image-scanning).
    Further Reading
    R.W.Hubbell, 1946, 4,000 Years of Television, London: G.Harrap \& Co.
    KF

    Biographical history of technology > Nipkow, Paul Gottlieb

  • 10 Rosing, Boris

    [br]
    fl. c. 1907 St Petersburg, Russia
    [br]
    Russian scientist who made early experiments in television.
    [br]
    In 1907, while Professor at St Petersburg Technological Institute, Rosing proposed the use of the Braun tube as a television display in conjunction with a photoelectric cell and double mirrordrum scanning system as a pick-up device. Four years later he was apparently able to transmit faint and very crude static pictures.
    [br]
    Bibliography
    1907, British patent no. 27,570.
    Further Reading
    C.J.Hylander \& R Harding, 1941, An Introduction to Television.
    R.W.Hubbell, 1946, 4,000 Years of Television, London: G.Harrap \& Sons.
    KF

    Biographical history of technology > Rosing, Boris

  • 11 Flechsig, W.

    [br]
    fl. c.1938 Germany
    [br]
    German engineer notable for early patents that foreshadowed the development of the shadowmask colour cathode ray tube.
    [br]
    In 1938, whilst working for a German electrical company, Flechsig filed a patent in which he described the use of an array of stretched parallel wires to control the landing of either one or three electron beams on separate red, green and blue phosphor stripes within a single cathode ray tube. Whilst the single-beam arrangement required subsidiary deflection to alternate the beam landing angle, the three-beam version effectively used the wires to "mask" the landing of the electron beams so that each one only illuminated the relevant colour phosphor stripes. Although not developed at the time, the concept anticipated the subsequent invention of the shadowmask tube by RCA in the early 1950s and, even more closely, the development of the Sony Trinitron some years later.
    [br]
    Bibliography
    1938, German patent no. 736, 575.
    1941, French patent no. 866, 065.
    Further Reading
    E.W.Herold, 1976, "A history of colour television displays", Proceedings of the Institute of Electrical and Electronics Engineers 64:1,331.
    K.G.Freeman, "The history of colour CRTs. A personal view", International Conference on the History of Television, Institution of Electrical Engineers Publication no. 271, p.
    38.
    KF

    Biographical history of technology > Flechsig, W.

См. также в других словарях:

  • Television set — [1] TV set redirects here. For other uses, see Television set (disambiguation) …   Wikipedia

  • Baird — [berd] John Logie [lō′gē] 1888 1946; Scot. inventor & television pioneer * * * (1888–1946) a Scottish inventor who is remembered mainly for his work on early forms of television in the 1920s and 1930s. The BBC began using Baird’s system in 1929,… …   Universalium

  • Baird — may refer to:Places* Baird, Hastings, a local government ward within Hastings Borough Council in the county of East Sussex, England * Baird, Texas, a US city * Baird Peninsula, Nunavut, CanadaPeople*John Logie Baird, inventor of the first… …   Wikipedia

  • Baird — Baird,   1) [beəd] John Logie, britischer Fernsehpionier, * Helensburgh (Strathclyde Region) 13. 8. 1888, ✝ Bexhill on Sea (County East Sussex) 14. 6. 1946; ihm gelang 1926 in London die erste Fernsehvorführung eines mit einer Nipkow Scheibe in… …   Universal-Lexikon

  • Television — Télévision « Télé » et « TV » redirigent ici. Pour les autres significations, voir Télé (homonymie) et TV (homonymie). Pour les articles homonymes, voir télévi …   Wikipédia en Français

  • Télévision moderne — Télévision « Télé » et « TV » redirigent ici. Pour les autres significations, voir Télé (homonymie) et TV (homonymie). Pour les articles homonymes, voir télévi …   Wikipédia en Français

  • Télévision portable — Télévision « Télé » et « TV » redirigent ici. Pour les autres significations, voir Télé (homonymie) et TV (homonymie). Pour les articles homonymes, voir télévi …   Wikipédia en Français

  • Television in Mexico — first began in August 19, 1946 in Mexico City when Guillermo González Camarena transmitted the first television signal in Latin America from his home’s bathroom. On September 7, 1946 at 8:30 PM (CST) Mexico’s and Latin America’s first… …   Wikipedia

  • TÉLÉVISION ET RADIODIFFUSION - La naissance et l’expansion de la radio-télévision dans le monde — La rapidité et l’universalité du développement de la radio et de la télévision, mais aussi l’importance et la diversité de leurs effets, en font un des sujets les plus intéressants de l’histoire contemporaine. Un des plus délicats aussi: outre la …   Encyclopédie Universelle

  • Télévision Numérique Terrestre — first logo TNT (Télévision Numérique Terrestre) is the national digital terrestrial service for France. It formally arrived on 31 March 2005 after a short testing period. Like Freeview in the United Kingdom it will support many new channels as… …   Wikipedia

  • Baird — Baird, John Lo|gie (1888 1946) a Scottish engineer who invented a television system …   Dictionary of contemporary English

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»